Array-based Lisp?

@raviqge


https://github.com/raviqqe

Daydreaming about an array-based Lisp
language...



Progress so far

https://github.com/ravigge/arachne

Single-word runtime value with NaN boxing

Reference counting GC

Interpreter
o AST-based implementation of primitive operations

o Bytecode VM
= Work in progress...


https://github.com/raviqqe/arachne

Virtual machine

e Stack machine

Instructions

nil, float64 , symbol, local, get, set, length, add, subtract, multiply,
divide , call, closure, equal, array, drop, dump, jump, return

e nil, float64 , symbol : Pushes a constant.

e local : Gets a value of a local variable.

e get : Gets a value from an array.

e set : Sets a value to an array.



Types

e Float64
e Symbol
e Function
e Array
e Nil
o () = 0 = false



Design decisions

e Operand evaluation order & argument order in a stack
o Scheme doesn't specify its operand evaluation order in its specification.

e Tight or loose coupling between bytecode compiler and VM
o Is it ok to embed runtime values into bytecodes?

o Do we want to save bytecodes of modules in a file system?



Next tasks...

e call Instruction

e Closures



Summary

e Daydreaming a language is fun.



Ribbit
e https://github.com/udem-diteam/ribbit

e AOT compiler + RVM

e Everything is a rib.
o Rib is a three-word data structure.

Objects

Bytecodes

e You can GC bytecodes!


https://github.com/udem-dlteam/ribbit

