
Progress report in Pen programming language

June 19th, 2022

@raviqqe

https://github.com/raviqqe

Agenda
Progress report

Relaxed atomic operations in reference counting

Next plans

Progress report

Relaxed atomic operations in reference counting
Reference counting can use relaxed atomic or non-atomic operations sometimes.

For only references never shared by multiple threads

Part of the Perceus reference counting algorithm

https://www.microsoft.com/en-us/research/publication/perceus-garbage-free-reference-counting-with-reuse/

Benchmark

Conway's game of life

Size: 20 x 40

Iterations: 100

> hyperfine -w 3 ~/app-old ~/app-new
Benchmark 1: /home/raviqqe/app-old
 Time (mean ± σ): 1.712 s ± 0.011 s [User: 1.658 s, System: 0.012 s]
 Range (min … max): 1.694 s … 1.727 s 10 runs

Benchmark 2: /home/raviqqe/app-new
 Time (mean ± σ): 1.175 s ± 0.021 s [User: 1.124 s, System: 0.008 s]
 Range (min … max): 1.152 s … 1.229 s 10 runs

Summary
 '/home/raviqqe/app-new' ran
 1.46 ± 0.03 times faster than '/home/raviqqe/app-old'

Record update benchmark
The previous result had several performance bugs!

Inefficient map literal compilation

Non-unique references

Configuration

Hash map initialization with many entries

A number of entries: 100,000

Key type: 64-bit floating point number

Results

Pen is 6 ~ 7 times slower than Rust currently...

Pen

> hyperfine -w 3 ./app
Benchmark 1: ./app
 Time (mean ± σ): 274.0 ms ± 2.7 ms [User: 206.7 ms, System: 16.8 ms]
 Range (min … max): 269.6 ms … 279.3 ms 10 runs

im-rs in Rust

HashMap::insert(&mut self, k: K, v: V) -> Option<V>

test hashmap_insert_mut_100000 ... bench: 34,869,571 ns/iter (+/- 4,337,627)

Next plans
Reference counting optimization

Unboxing small records #671

Other basic optimizations

Proper C calling convention in FFI #444
Compiling to MLIR?

https://github.com/pen-lang/pen/issues/671
https://github.com/pen-lang/pen/issues/444

Summary
Progress

Relaxed atomic operations in reference counting

Next plans
Record unboxing

Appendix

Record update benchmark

No uniqueness check

> for _ in $(seq 5); do time ./app; done
./app 7.98s user 0.26s system 99% cpu 8.302 total
./app 7.70s user 0.24s system 99% cpu 7.991 total
./app 7.71s user 0.29s system 99% cpu 8.052 total
./app 7.76s user 0.31s system 99% cpu 8.117 total
./app 8.10s user 0.26s system 99% cpu 8.423 total

Acquire ordering

> for _ in $(seq 5); do time ./app; done
./app 7.68s user 0.28s system 99% cpu 8.019 total
./app 7.57s user 0.32s system 99% cpu 7.950 total
./app 7.63s user 0.22s system 99% cpu 7.905 total
./app 7.58s user 0.26s system 99% cpu 7.899 total
./app 7.59s user 0.27s system 99% cpu 7.933 total

Relaxed (buggy) ordering

> for _ in $(seq 5); do time ./app; done
./app 7.46s user 0.30s system 99% cpu 7.817 total
./app 7.41s user 0.24s system 99% cpu 7.703 total
./app 7.51s user 0.26s system 99% cpu 7.823 total
./app 7.47s user 0.26s system 99% cpu 7.775 total
./app 7.42s user 0.26s system 99% cpu 7.734 total

Relaxed (correct) ordering

> for _ in $(seq 5); do time ./app; done
./app 7.60s user 0.26s system 99% cpu 7.930 total
./app 7.50s user 0.29s system 99% cpu 7.860 total
./app 7.60s user 0.27s system 99% cpu 7.940 total
./app 7.56s user 0.25s system 99% cpu 7.865 total
./app 7.55s user 0.27s system 99% cpu 7.878 total

Game of life benchmark
Relaxed atomic operations for thunks

Before:

> hyperfine ./app
Benchmark 1: ./app
 Time (mean ± σ): 11.637 s ± 0.191 s [User: 11.588 s, System: 0.094 s]
 Range (min … max): 11.311 s … 11.992 s 10 runs

After:

> hyperfine ./app
Benchmark 1: ./app
 Time (mean ± σ): 11.891 s ± 0.146 s [User: 11.822 s, System: 0.109 s]
 Range (min … max): 11.614 s … 12.097 s 10 runs

