
Progress report in Pen programming language

September 3, 2022

@raviqqe

https://github.com/raviqqe

Agenda
Progress report

(Full) lambda lifting

Snake game

Next plans

Progress report

(Full) lambda lifting
Flatten nested functions into global functions.

Pen supports lifting closures with free variables.
So far, it supported only the cases where no free variable exists.

MIR normalization to the A-normal(-ish) form is also introduced for this change.
In the future, it'll be easier to write passes at the MIR level.

References

Lambda lifting | Wikipedia

https://en.wikipedia.org/wiki/Lambda_lifting

(Full) lambda lifting

Algorithm

Before:

f = \(x number) number {
 g = \(y string) number {
 # ...
 }

 g(y)
}

(Full) lambda lifting

Algorithm

After:

f = \(x number) number {
 lifted_g(y, x)
}

lifted_g = \(y string, x number) number {
 # ...
}

Benchmark

Speed up Heap allocation decrease

Hash map insert 6% 37.7%

Hash map update 5% 38.9%

Probably, heap allocation is not a bottle neck in those cases...

The bottle neck might be redundant hash calculation?

Snake game
Demo

Missing language features

Pretty printing for debugging

String concatenation operator

General list pattern match

Currently, Pen can match only a head and a tail.

Next plans
More applications?

Web services

Games

Language features

Summary
Progress

(Full) lambda lifting

Snake game

Next plans

Appendix

Benchmark results

> hyperfine -w 3 ./insert-*
Benchmark 1: ./insert-new
 Time (mean ± σ): 248.7 ms ± 2.5 ms [User: 180.5 ms, System: 17.9 ms]
 Range (min … max): 245.4 ms … 252.8 ms 12 runs

Benchmark 2: ./insert-old
 Time (mean ± σ): 261.1 ms ± 3.5 ms [User: 193.0 ms, System: 17.6 ms]
 Range (min … max): 256.9 ms … 269.2 ms 11 runs

Summary
 './insert-new' ran
 1.05 ± 0.02 times faster than './insert-old'

> hyperfine -w 3 ./update-*
Benchmark 1: ./update-new
 Time (mean ± σ): 405.6 ms ± 3.2 ms [User: 338.5 ms, System: 16.1 ms]
 Range (min … max): 401.8 ms … 410.9 ms 10 runs

Benchmark 2: ./update-old
 Time (mean ± σ): 431.1 ms ± 4.6 ms [User: 360.9 ms, System: 19.1 ms]
 Range (min … max): 422.6 ms … 438.2 ms 10 runs

Summary
 './update-new' ran
 1.06 ± 0.01 times faster than './update-old'

> valgrind ./insert-old
==595278== Memcheck, a memory error detector
==595278== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==595278== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==595278== Command: ./insert-old
==595278==
==595278==
==595278== HEAP SUMMARY:
==595278== in use at exit: 10,784 bytes in 74 blocks
==595278== total heap usage: 1,073,769 allocs, 1,073,695 frees, 50,359,170 bytes allocated
==595278==
==595278== LEAK SUMMARY:
==595278== definitely lost: 0 bytes in 0 blocks
==595278== indirectly lost: 0 bytes in 0 blocks
==595278== possibly lost: 320 bytes in 3 blocks
==595278== still reachable: 10,464 bytes in 71 blocks
==595278== of which reachable via heuristic:
==595278== newarray : 536 bytes in 2 blocks
==595278== suppressed: 0 bytes in 0 blocks
==595278== Rerun with --leak-check=full to see details of leaked memory
==595278==
==595278== For lists of detected and suppressed errors, rerun with: -s
==595278== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

> valgrind ./insert-new
==597282== Memcheck, a memory error detector
==597282== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==597282== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==597282== Command: ./insert-new
==597282==
==597282==
==597282== HEAP SUMMARY:
==597282== in use at exit: 10,784 bytes in 74 blocks
==597282== total heap usage: 669,140 allocs, 669,066 frees, 34,174,010 bytes allocated
==597282==
==597282== LEAK SUMMARY:
==597282== definitely lost: 0 bytes in 0 blocks
==597282== indirectly lost: 0 bytes in 0 blocks
==597282== possibly lost: 320 bytes in 3 blocks
==597282== still reachable: 10,464 bytes in 71 blocks
==597282== of which reachable via heuristic:
==597282== newarray : 536 bytes in 2 blocks
==597282== suppressed: 0 bytes in 0 blocks
==597282== Rerun with --leak-check=full to see details of leaked memory
==597282==
==597282== For lists of detected and suppressed errors, rerun with: -s
==597282== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

> valgrind ./update-old
==599735== Memcheck, a memory error detector
==599735== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==599735== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==599735== Command: ./update-old
==599735==
==599735==
==599735== HEAP SUMMARY:
==599735== in use at exit: 10,784 bytes in 74 blocks
==599735== total heap usage: 2,083,027 allocs, 2,082,953 frees, 82,655,426 bytes allocated
==599735==
==599735== LEAK SUMMARY:
==599735== definitely lost: 0 bytes in 0 blocks
==599735== indirectly lost: 0 bytes in 0 blocks
==599735== possibly lost: 320 bytes in 3 blocks
==599735== still reachable: 10,464 bytes in 71 blocks
==599735== of which reachable via heuristic:
==599735== newarray : 536 bytes in 2 blocks
==599735== suppressed: 0 bytes in 0 blocks
==599735== Rerun with --leak-check=full to see details of leaked memory
==599735==
==599735== For lists of detected and suppressed errors, rerun with: -s
==599735== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

> valgrind ./update-new
==600256== Memcheck, a memory error detector
==600256== Copyright (C) 2002-2022, and GNU GPL'd, by Julian Seward et al.
==600256== Using Valgrind-3.19.0 and LibVEX; rerun with -h for copyright info
==600256== Command: ./update-new
==600256==
==600256==
==600256== HEAP SUMMARY:
==600256== in use at exit: 10,784 bytes in 74 blocks
==600256== total heap usage: 1,273,769 allocs, 1,273,695 frees, 50,285,106 bytes allocated
==600256==
==600256== LEAK SUMMARY:
==600256== definitely lost: 0 bytes in 0 blocks
==600256== indirectly lost: 0 bytes in 0 blocks
==600256== possibly lost: 320 bytes in 3 blocks
==600256== still reachable: 10,464 bytes in 71 blocks
==600256== of which reachable via heuristic:
==600256== newarray : 536 bytes in 2 blocks
==600256== suppressed: 0 bytes in 0 blocks
==600256== Rerun with --leak-check=full to see details of leaked memory
==600256==
==600256== For lists of detected and suppressed errors, rerun with: -s
==600256== ERROR SUMMARY: 0 errors from 0 contexts (suppressed: 0 from 0)

