
Nondeterministic parallel computation in Pen

August 7th, 2022

@raviqqe

https://github.com/raviqqe

Overview of Pen
Functional programming

Immutable values

Inductive values
Reference counting with in-place mutation

No circular dependency

Capability-based effect system
Pass down "effect arguments" to functions.

Parallel computation without data race
Synchronization by data structures (e.g. thunks, lazy lists, etc.)

Examples

Capability-based effect system

import Os'Console

main = \(os Os) none | error {
 Console'Print(os, "Hello, world!")?

 none
}

Nondeterministic parallel computation
Parallel computation is nondeterministic in general.

You can't know which codes finish first (or even if they do!) before running them.

Nondeterminism is not necessary for parallel computation.

e.g. purely functional programs can be parallelized automatically.

Nondeterminism sometimes gives better performance in parallel computation.
e.g. consumers want to consume values in an order in which they get

produced.

Nondeterminism in other languages

Promise in JavaScript

const foo = async () => {
 // ...
};

const bar = async () => {
 // ...
};

const main = async () => {
 const x = foo();
 const y = await bar();

 (await x) + y;
};

Channels in Go

func main() {
 c1 := make(chan string)
 c2 := make(chan string)

 go func() {
 c1 <- "fast"
 }()
 go func() {
 time.Sleep(1 * time.Second)
 c2 <- "slow"
 }()

 select {
 case msg := <-c1:
 fmt.Println(msg)
 case msg := <-c2:
 fmt.Println(msg)
 }
}

Promise.race() in JavaScript

Promise.race([compute(x), compute(y)]);

Examples in Pen

Futures

Deterministic parallel computation

import Os'Console

f = \(x foo, y foo) bar {
 v = go(\() number {
 computeA(x)
 })

 w = computeB(y)

 aggregate(v(), w)
}

Examples in Pen

Racing two futures

Nondeterministic parallel computation

import Os'Console

f = \(x foo, y foo) [number] {
 race([[number] [number computeA(x)], [number computeB(y)]])
}

Examples in Pen

Lazy lists (streams or channels)

Nondeterministic parallel computation

import Os'Console

f = \(x foo, y foo) [number] {
 # computeA and computeB produces two series of data computed concurrently.
 race([[number] computeA(x), computeB(y)])
}

What else do we need?
The go and race built-in functions can represent many concurrency patterns

found in other languages.
Concurrency in Go

Circular dependency is apparently impossible to get represented.

e.g. actors talking to and depending on each other

There isn't any research on what primitives for concurrent/parallel computation is

necessary for programming languages.

Existing researches are more about what we can build on the currently available
primitives like multi-core CPUs, threads, atomic memory operations, etc.

https://www.oreilly.com/library/view/concurrency-in-go/9781491941294/

Summary
Pen now has two go and race built-in functions.

They can represent many concurrent/parallel programming patterns.

Questions
Are they expressive enough in practice?

What concurrent/parallel computation primitives are necessary for languages
to be expressive enough?

Application development?

