
Hygienic macro on Stak Scheme
@raviqqe

September 30, 2023

https://github.com/raviqqe

Contents
Hygienic macro

Overview

Implementation

Progress
New features

Next tasks...

Hygienic macro

Overview
A macro transcribes a source code into another source code.

Hygienic macros must not:
Insert a binding that captures a reference not introduced by the macro itself.

Insert a reference that is captured by a binding not introduced by the macro

itself.

Scheme

You can capture free variables in macros.
Just like functions

Examples

Inserting a reference

Definition

(define x 42)

(define-syntax foo
 (syntax-rules
 ((foo)
 x)))

Use

(let ((x 13))
 (foo)) ; -> x, 42 but not 13

Examples

Inserting a binding

Definition

(define-syntax foo
 (syntax-rules
 ((foo x)
 ((lambda (y) x) 13))))

Use

(define y 42)

(foo y) ; -> ((lambda (y) y) 13), 42 but not 13

Implementation
Based on "Macros That Work" by William Clinger

With modifications for:
Global variables

Destructive update of syntactic environment

What to do?

Track syntactic environment
What do variables denote on definitions and uses of macros?

Expanding macros while preserving the hygienic invariants

Renaming variables introduced by macros

https://www.researchgate.net/publication/220997237_Macros_That_Work

Implementation

Representation of syntactic environment

The environment field is an association list from symbols to their denotations.

(define-record-type expansion-context
 (make-expansion-context environment)
 expansion-context?
 (environment expansion-context-environment expansion-context-set-environment!))

Implementation

Macro transformers

Definition

; (define-syntax foo (syntax-rules ...))
(define transformer
 (make-transformer definition-context macro-transformer-definition))

(define new-environment
 (environment-push environment name transformer))

Use

; (foo ...)
(transformer use-context expression)

Implementation

Expanding macros

Rename free variables introduced by macros.

Keep denotations on the use of macros.

(define (fill-template definition-context use-context matches template)
 (cond
 ((symbol? template)
 (let ((pair (assv template matches)))
 (if pair
 (cdr pair)
 (let (
 (name (rename-variable use-context template))
 (denotation (resolve-denotation definition-context template)))
 (when (denotation? denotation)
 (expansion-context-set! use-context name (denotation-value denotation)))
 name))))

 ; ...

Stak Scheme

It had only the "poisonous" syntax-rules macro.

Now, it's hygienic!
~300 lines in total

syntax-rules pattern match

Hygienic macro definition and expansion

Supports most of macro constructs from R7RS
define-syntax

let-syntax

letrec-syntax

syntax-rules

References

BiwaSchemeにhygienic macroを入れる | 定期ミートアップ 第7回 yhara

Macros That Work (a paper)

Hygienic Macros Through Explicit Renaming

5.2 Hygienic macros | Gauche

Hygienic macro | Wikipedia

https://www.researchgate.net/publication/220997237_Macros_That_Work
https://dl.acm.org/doi/pdf/10.1145/1317265.1317269
https://practical-scheme.net/gauche/man/gauche-refe/Hygienic-macros.html
https://en.wikipedia.org/wiki/Hygienic_macro

Progress

New features
Hygienic syntax-rules

Quasi-quotation

read and write procedures

Ports and EOF objects

New features (continued)
Symbol table GC

apply procedure

Ribbit Scheme implemented it as a primitive.

Stak Scheme realizes it as an extension of calling convention in a VM.
Variadic arguments and parameters are symmetric.

e.g. Python, Ruby, and JavaScript

https://github.com/udem-dlteam/ribbit/tree/main

Next tasks...
Record type

cond-expand

Self-hosting

Summary
Building hygienic macros is fun.

