
Embedding Stak Scheme in Rust
@raviqqe

January 14, 2024

https://github.com/raviqqe

Contents
Embedding Scheme in Rust

Related crates

Release process

Future work

Embedding Scheme in Rust
Stak Scheme can be embeddable into Rust codes.

Rust codes can simply "import" codes written in Stak Scheme.

Currently, they can talk to each other only by I/O.

Object interoperability (maybe) in the future (probably!)

Examples
use stak_device::FixedBufferDevice;
use stak_macro::compile_r7rs;
use stak_primitive::SmallPrimitiveSet;
use stak_vm::Vm;

const HEAP_SIZE: usize = 1 << 16;
const BUFFER_SIZE: usize = 1 << 10;

let mut heap = [Default::default(); HEAP_SIZE];
let device = FixedBufferDevice::<BUFFER_SIZE, 0>::new(&[]);
let mut vm = Vm::new(&mut heap, SmallPrimitiveSet::new(device)).unwrap();

const PROGRAM: &[u8] = compile_r7rs!(r#"
 (import (scheme write))

 (display "Hello, world!")
"#);

vm.initialize(PROGRAM.iter().copied()).unwrap();
vm.run().unwrap();

assert_eq!(vm.primitive_set().device().output(), b"Hello, world!");

Examples

Macros

compile_r7rs! compiles R7RS Scheme codes into bytecodes.

include_r7rs! includes and compiles R7RS Scheme codes from a file path.

They run at a compile time.

Related crates
A stak-macro crate contains compile_r7rs! and include_r7rs! .

A stak-compiler crate contains a compile_r7rs function which runs compiler

bytecodes and a VM for it to compile another Scheme program.
The crate is not dependent on another Scheme interpreter.

Release process
A (binary) bytecode file is bundled with a crate of stak-compiler on release.

On development, they are built by build.rs .

On cargo publish of the crate, the bytecode file is bundled as an asset.

cargo install stak or the other crates do not require another Scheme
interpreter anymore!

Future work
Scheme embedded in Rust

Scheme/Rust object interoperability

VTable?

Serde?

Library system

eval procedure

Summary
Embedding Scheme in Rust is fun!

